If f(x) = \( \{|x|+1,x<0,0,x=0,|x|-1,x>1\) For what value (s) of does \( \lim\limits_{x \to a}f(x)\)exists?

Asked by Pragya Singh | 1 year ago |  58

1 Answer

Solution :-

The given function is

When a = 0,

\( \lim\limits_{x \to a^-}f(x)=\lim\limits_{x \to 0^-}(|x|+1)\)

\( \lim\limits_{x \to 0}(-x+1)\)

= 0+1

= 1

Here, it is observed that

\( \lim\limits_{x \to 0^-}f(x)\neq \lim\limits_{x \to 0^+}f(x)\)

\( \lim\limits_{x \to 0}f(x)\) does not exist

When a<0,

\( \lim\limits_{x \to a^-}f(x)=\lim\limits_{x \to a^-}(|x|+1)\)

\( \lim\limits_{x \to a}(-x+1)=-a+1\)

\( \lim\limits_{x \to a^+}f(x)=\lim\limits_{x \to a^+}(|x|+1)\)

\( \lim\limits_{x \to a}(-x+1)\)

-a+1

Thus, limit of f(x) exists at x = a, where a < 0.

When a > 0

\( \lim\limits_{x \to a^-}f(x)=\lim\limits_{x \to a^-}(|x|+1)\)

\( \lim\limits_{x \to a}(-x-1)\)

= a-1

\( \lim\limits_{x \to a^-}f(x)=\lim\limits_{x \to a^+}f(x)=a-1\)

Thus, limit of f(x) exists at x = a, where a > 0.

Thus, \( \lim\limits_{x \to a}f(x)\) exists for all \( a\neq0\)

Answered by Abhisek | 1 year ago

Related Questions