\( \lim\limits_{x \to 1}\dfrac{f(x)-2}{x^2-1}=\pi\)
\(\dfrac{\lim\limits_{x \to 1}f(x)-2}{\lim\limits_{x \to 1}(x^2-1)}=\pi\)
\( \lim\limits_{x \to 1}(f(x)-2)=\pi\lim\limits_{x \to 1}(x^2-1)\)
\( \lim\limits_{x \to 1}(f(x)-2)=\pi (1^2-1)\)
\( \lim\limits_{x \to 1}(f(x)-2)=0\)
\( \lim\limits_{x \to 1}(f(x)- \lim\limits_{x \to 1}2=0\)
\( \lim\limits_{x \to 1}(f(x)- 2=0\)
\( \lim\limits_{x \to 1}(f(x)=2\)
Answered by Abhisek | 1 year ago