\( \lim\limits_{x \to 0}f(x)=\lim\limits_{x \to 0}(mx^2+n)\)
\( m(0)^2+n=n\)
\( \lim\limits_{x \to 0^+}f(x)=\lim\limits_{x \to 0}(nx+m)\)
\( n(0)+m=m\)
Thus,\( \lim\limits_{x \to 0^+}f(x)\) exists if m=n
\( \lim\limits_{x \to 1^-}f(x)=\lim\limits_{x \to 1}(nx+m)\)
= n(1)+m
= m+n
\( \lim\limits_{x \to 1^+}f(x)=\lim\limits_{x \to 1}(nx^3+m)\)
= n(1)3+m
= m+n
\( \lim\limits_{x \to 1^-}f(x)= \lim\limits_{x \to 1^+}f(x)= \lim\limits_{x \to 1}f(x)\)
Thus,\( \lim\limits_{x \to 1}f(x)\) exists for any internal value of m and n.
Answered by Abhisek | 1 year ago