By Leibnitz product rule,
\( f'(x)=x^{-3}\dfrac{d}{dx}(5+3x)+(5+3x)\dfrac{d}{dx}(x^{-3})\)
\( x^{-3}(0+3)+(5+3x)(3x^{-3-1})\)
\( x^{-3}(3)+(5+3x)(3x^{-4})\)
\(3x^{-3}-15x^{-4}-9x^{-3}\)
\( -6x^{-3}-15x^{-4}\)
\(\dfrac{-3x^{-3}}{x}(2x+5)\)
\( \dfrac{-3}{x^4}(5+2x)\)
Answered by Pragya Singh | 1 year ago