Let f(x) = sec x
= \( \dfrac{1}{cosx}\)
By differentiating both sides, we get
\( f'(x) =\dfrac{d}{dx}(\dfrac{1}{cosx})\)
\( f'(x) =cosx\dfrac{cosx\dfrac{d}{dx}(1)-1\dfrac{d}{dx}(cosx)}{cos^2x}\)
\( \dfrac{cosx\times 0-(-sinx)}{cos^2x}\)
We get
= \( \dfrac{sinx}{cos^2x}= \dfrac{sinx}{cosx}\times \dfrac{1}{cosx}\)
= tan x sec x
Answered by Pragya Singh | 1 year ago