\( f'(x)=\lim\limits_{h \to 0}\dfrac{f(x+h)-f(x)}{h}\)
\( \lim\limits_{h \to 0} \dfrac{1}{h}[5sin(x+h)\)
\( -6cos(x+h)+7-5sinx+6cosx-7]\)
\(5 \lim\limits_{h \to 0} \dfrac{1}{h}[sin(x+h)-sinx]\)
\( 6 \lim\limits_{h \to 0} \dfrac{1}{h} [cos(x+h)-cosx]\)
= \( 5cosx.1-6[(cosx).(0)-sinx.1]\)
= \( 5cosx+6sinx\)
Answered by Pragya Singh | 1 year ago