Let f(x) = cosec x cot x
By Leibnitz product rule,
f’(x) = cosec x(cot x)’+cot x(cosec x)’ ….(1)
Let f1(x) = cot x.
Accordingly, f1(x + h) = cot (x + h)
By first principle,
\( f'(x)=\lim\limits_{h \to 0}\dfrac{f(x+h)-f(x)}{h}\)
\( f'(x)=\lim\limits_{h \to 0}\dfrac{cot(x+h)-cot(x)}{h}\)
\(\lim\limits_{h \to 0}\dfrac{1}{h}(\dfrac{cot(x+h)}{sin(x+h)}-\dfrac{cos(x)}{sinx})\)
= \( \dfrac{-1}{sinx} (\lim\limits_{h \to 0} \dfrac{sinh}{h} )[ \lim\limits_{h \to 0}\dfrac{1}{sin(x+h)}] \)
= \( \dfrac{-1}{sinx}.1.( \lim\limits_{h \to 0}\dfrac{1}{sin(x+0)})\)
= \( \dfrac{-1}{sin^2x}\)
cosec2x=− (cotx)'= - cosxec2x……(2)
Now, let f2(x) = cosec x.
Accordingly, f2(x + h) = cosec(x + h)
By first principle,
\( f_2'(x)=\lim\limits_{h \to 0}\dfrac{f_2(x+h)-f_2(x)}{h} \)
\(\lim\limits_{h \to 0}\dfrac{1}{h}(\dfrac{1}{sin(x+h)}-\dfrac{1}{sinx})\)
\( \lim\limits_{h \to 0}\dfrac{1}{h}(\dfrac{sinx-sin(x+h)}{sinxsin(x+h)})\)
= \( \dfrac{-1}{sinx}.1.\dfrac{(\dfrac{2x+h}{2})}{sin(x+0)}\)
= \( \dfrac{-1}{sinx}.\dfrac{cosx}{sinx}\)
(cosec x)’=-cosec x. cot x
From (1), (2), and (3), we obtain
f'(x) = cosec x(-cosec2x) +cot x(-cosec x cot x)
= -cosec3 x-cot2 x cosec x
Answered by Pragya Singh | 1 year ago