Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

\( \dfrac{cosx}{1+sinx}\)

Asked by Abhisek | 1 year ago |  51

1 Answer

Solution :-

Let f(x) = \( \dfrac{cosx}{1+sinx}\)

By quotient rule,

\(=\dfrac{(1+sinx)\dfrac{d}{dx}(cosx)-(cosx)\dfrac{d}{dx}(1+sinx)}{(1+sinx)^2}\)

\(\dfrac{(1+sinx)(-sinx)-(cosx)(cosx)}{(1+sinx)^2}\)

\( \dfrac{-sinx-sin^2x-(cos^2x)}{(1+sinx)^2}\)

\( \dfrac{-sinx-(sin^2x+cos^2x)}{(1+sinx)^2}\)

\( \dfrac{-(1-sinx)}{(1+sinx)^2} \)

\(\dfrac{-1}{ (1+sinx)^2}\)

Answered by Pragya Singh | 1 year ago

Related Questions