Let f(x) = (x + sec x) (x – tan x) By product rule,
\( f(x)=(x+secx)\dfrac{d}{dx}(x-tanx)\)
\( +(x-tanx)\dfrac{d}{dx}(x+secx)\)
\( f(x+secx)[1-\dfrac{d}{dx}tanx)]\)
\( +(x-tanx)[1+\dfrac{d}{dx}secx]\) ........(1)
Let f1(x) = tan x, f2 (x) = sec x Accordingly, f1(x + h)-tan (x + h) and f2 (x + h) = sec (x + h)
\( f'(x)=\lim\limits_{h \to 0}\dfrac{f(x+h)-f(x)}{h} \)
\(\lim\limits_{h \to 0}[\dfrac{tan(x+h)-tan(x)}{h}] \)
\(\lim\limits_{h \to 0}\dfrac{1}{h} [\dfrac{sin(x+h)}{cos(x+h)}-\dfrac{sinx}{cosx}]\)
\(( \lim\limits_{h \to 0} \dfrac{sinh}{h}).(\lim\limits_{h \to 0} \dfrac{1}{cos(x+h)cosx}) \)
\( 1\times \dfrac{1}{cos^2}=sec^2x\)
\( f_2'(x)=\lim\limits_{h \to 0}[\dfrac{f_2+(x+h)-f_2(x)}{h}]\)
\(\lim\limits_{h \to 0}[\dfrac{sec(x+h)-sec(x)}{h}]\)
\( \lim\limits_{h \to 0}\dfrac{1}{h}[\dfrac{1}{cos(x+h)}-\dfrac{1}{cosx}]\)
\( \lim\limits_{h \to 0}\dfrac{1}{h}[\dfrac{cosx-cos(x+h)}{cos(x+h)cosx}]\)
\( secx.\dfrac{sinx.1}{cosx}\)
\( \dfrac{d}{dx}secx=sectanx\)
From (i), (ii), and (iii), we obtain
f'(x) = (x +sec x) (1-sec2 x) +(x - tan x) (1+sec x tan x)
Answered by Pragya Singh | 1 year ago