Solve: 14y - 8 = 13

Asked by Aaryan | 2 years ago |  176

##### Solution :-

14y - 8 = 13

Transposing 8 to R.H.S, we obtain

14y = 13 + 8

14y = 21

Dividing both sides by 14, we obtain

$$\frac{14y}{14}$$ = $$\frac{21}{4}$$

y = $$\frac{3}{2}$$

Answered by Sakshi | 2 years ago

### Related Questions

#### Solve the inequations and graph their solutions on a number line  – 1 < (x / 2) + 1 ≤ 3, x ε l

Solve the inequations and graph their solutions on a number line  – 1 < ($$\dfrac{x}{2}$$) + 1 ≤ 3, x ε l

#### Solve the inequations and graph their solutions on a number line – 4 ≤ 4x < 14, x ε N

Solve the inequations and graph their solutions on a number line – 4 ≤ 4x < 14, x ε N

#### Solve (x / 3) + (1 / 4) < (x / 6) + (1 / 2), x ε W. Also represent its solution on the number line.

Solve ($$\dfrac{x}{3}$$) + ($$\dfrac{1}{4}$$) < ($$\dfrac{x}{6}$$) + ($$\dfrac{1}{2}$$), x ε W. Also represent its solution on the number line.

#### If the replacement set is {-3, -2, -1, 0, 1, 2, 3}, solve the inequation {(3x – 1) / 2} < 2. Represent its solution

If the replacement set is {-3, -2, -1, 0, 1, 2, 3}, solve the inequation $$\dfrac {(3x – 1) }{2} < 2$$. Represent its solution on the number line.

#### Solve the inequations (3 / 2) – (x / 2) > – 1, x ε N

Solve the inequations ($$\dfrac{3}{2}$$) – ($$\dfrac{x}{2}$$) > – 1, x ε N