Let the common ratio between the number of boys and numbers of girls be x.
Number of boys = 7x
Number of girls = 5x
According to the given question,
Number of boys = Number of girls + 8
∴ 7x = 5x + 8
On transposing 5x to L.H.S, we obtain
7x - 5x = 8
2x = 8
On dividing both sides by 2, we obtain
\(\frac{2x}{2} = \frac{8}{2}\)
x = 4 Number of boys = 7x = 7 × 4 = 28
Number of girls = 5x = 5 × 4 = 20
Hence, total class strength = 28 + 20 = 48 students
Answered by Sakshi | 1 year agoSolve the inequations and graph their solutions on a number line – 1 < (\( \dfrac{x}{2}\)) + 1 ≤ 3, x ε l
Solve the inequations and graph their solutions on a number line – 4 ≤ 4x < 14, x ε N
Solve (\( \dfrac{x}{3}\)) + (\( \dfrac{1}{4}\)) < (\( \dfrac{x}{6}\)) + (\( \dfrac{1}{2}\)), x ε W. Also represent its solution on the number line.
If the replacement set is {-3, -2, -1, 0, 1, 2, 3}, solve the inequation \(\dfrac {(3x – 1) }{2} < 2\). Represent its solution on the number line.
Solve the inequations (\( \dfrac{3}{2}\)) – (\( \dfrac{x}{2}\)) > – 1, x ε N