(i) We have,
= \( \dfrac{sin (90° – 70°)}{ cos 70°} =\dfrac{ cos 70°}{cos70° }=1\) [∵ sin (90 – θ) = cos θ]
(ii) We have,
= \(\dfrac{ cos (90° – 71°)}{ sin 71°} = \dfrac{sin 71°}{ sin 71°}\) = 1 [∵ cos (90 – θ) = sin θ]
(iii) We have,
\( \dfrac{sin 21°}{ cos 69°} = \dfrac{sin (90° – 69°)}{ cos 69°} = \dfrac{cos 69°}{ cos69°}\) = 1 [∵ sin (90 – θ) = cos θ]
(iv) We have,
\( = \dfrac{tan (90° – 10°) }{ cot 80° }= \dfrac{cot 80°}{ cos80°}\) = 1 [∵ tan (90 – θ) = cot θ]
(v) We have,
=\(\dfrac{ sec (90° – 79°)}{ cosec 79°} = \dfrac{cosec 79°}{ cosec 79°}\) = 1
[∵ sec (90 – θ) = cosec θ]
Answered by Aaryan | 9 months agoProve the sinθ sin (90° – θ) – cos θ cos (90° – θ) = 0
Prove that sin 48° sec 48° + cos 48° cosec 42° = 2
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Evaluate the sec 50° sin 40° + cos 40° cosec 50°