Classify the function as injection, surjection or bijection f: Q − {3} → Q, defined by f (x) = \(\dfrac{ (2x +3)}{(x-3)}\)

Asked by Aaryan | 1 year ago |  51

1 Answer

Solution :-

Given f: Q − {3} → Q, defined by f (x) = \(\dfrac{ (2x +3)}{(x-3)}\)

Now we have to check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in the domain (Q − {3}), such that f(x) = f(y).

f(x) = f(y)

\( \dfrac{ (2x +3)}{(x-3)}=\dfrac{ (2y +3)}{(y-3)}\) 

(2x + 3) (y − 3) = (2y + 3) (x − 3)

2xy − 6x + 3y − 9 = 2xy − 6y + 3x − 9

9x = 9y

x = y

So, f is an injection.

Surjection test:

Let y be any element in the co-domain (Q − {3}), such that f(x) = y for some element x in Q (domain).

f(x) = y

\( \dfrac{ (2x +3)}{(x-3)}=y\)

2x + 3 = x y − 3y

2x – x y = −3y − 3

x (2−y) = −3 (y + 1)

x = \( \dfrac{-3(y + 1)}{(2 – y)}\) which is not defined at y = 2.

So, f is not a surjection and f is not a bijection

Answered by Aaryan | 1 year ago

Related Questions

Let A be the set of first five natural and let R be a relation on A defined as follows: (x, y) R x ≤ y

Express R and R-1 as sets of ordered pairs. Determine also

(i) the domain of R‑1

(ii) The Range of R.

Class 12 Maths Relations and Functions View Answer

A function f: R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).

Class 12 Maths Relations and Functions View Answer

If f: R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1 (24) and f−1 (5).

Class 12 Maths Relations and Functions View Answer

Consider f: R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with f-1(x) = \( \dfrac{\sqrt{(x+6)-1}}{3}\)

Class 12 Maths Relations and Functions View Answer

If f(x) = \(\dfrac{ (4x + 3)}{(6x – 4)}\), x ≠ (\( \dfrac{2}{3}\)) show that fof(x) = x, for all x ≠ (\( \dfrac{2}{3}\)). What is the inverse of f?

Class 12 Maths Relations and Functions View Answer