Classify the function as injection, surjection or bijectionf: Q → Q, defined by f(x) = x3 + 1

Asked by Sakshi | 1 year ago |  56

1 Answer

Solution :-

Given f: Q → Q, defined by f(x) = x3 + 1

Now we have to check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in the domain (Q), such that f(x) = f(y).

f(x) = f(y)

x+ 1 = y+ 1

x3 = y3

x = y

So, f is an injection.

Surjection test:

Let y be any element in the co-domain (Q), such that f(x) = y for some element x in Q (domain).

f(x) = y

x3+ 1 = y

x =\( 3\sqrt{y-1}\), which may not be in Q.

For example, if y= 8,

x3+ 1 =  8

x3= 7

x =\( 3\sqrt{7}\), which is not in Q.

So, f is not a surjection and f is not a bijection.

Answered by Aaryan | 1 year ago

Related Questions

Let A be the set of first five natural and let R be a relation on A defined as follows: (x, y) R x ≤ y

Express R and R-1 as sets of ordered pairs. Determine also

(i) the domain of R‑1

(ii) The Range of R.

Class 12 Maths Relations and Functions View Answer

A function f: R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).

Class 12 Maths Relations and Functions View Answer

If f: R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1 (24) and f−1 (5).

Class 12 Maths Relations and Functions View Answer

Consider f: R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with f-1(x) = \( \dfrac{\sqrt{(x+6)-1}}{3}\)

Class 12 Maths Relations and Functions View Answer

If f(x) = \(\dfrac{ (4x + 3)}{(6x – 4)}\), x ≠ (\( \dfrac{2}{3}\)) show that fof(x) = x, for all x ≠ (\( \dfrac{2}{3}\)). What is the inverse of f?

Class 12 Maths Relations and Functions View Answer