If f(x) = 2x + 5 and g(x) = x2 + 1 be two real functions, then describe each of the following functions:

(i) fog

(ii) gof

(iii) fof

(iv) f2

Also, show that fof ≠ f2

Asked by Aaryan | 1 year ago |  64

1 Answer

Solution :-

f(x) and g(x) are polynomials.

⇒ f: R → R and g: R → R.

So, fog: R → R and gof: R → R.

(i) (fog) (x) = f (g (x))

= f (x2 + 1)

= 2 (x+ 1) + 5

=2x2 + 2 + 5

= 2x2 +7

(ii) (gof) (x) = g (f (x))

= g (2x +5)

= (2x + 5)2 + 1

= 4x2 + 20x + 26

(iii) (fof) (x) = f (f (x))

= f (2x +5)

= 2 (2x + 5) + 5

= 4x + 10 + 5

= 4x + 15

(iv) f2 (x) = f (x) x f (x)

= (2x + 5) (2x + 5)

= (2x + 5)2

= 4x2 + 20x +25

Hence, from (iii) and (iv) clearly fof ≠ f2

Answered by Sakshi | 1 year ago

Related Questions

Let A be the set of first five natural and let R be a relation on A defined as follows: (x, y) R x ≤ y

Express R and R-1 as sets of ordered pairs. Determine also

(i) the domain of R‑1

(ii) The Range of R.

Class 12 Maths Relations and Functions View Answer

A function f: R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).

Class 12 Maths Relations and Functions View Answer

If f: R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1 (24) and f−1 (5).

Class 12 Maths Relations and Functions View Answer

Consider f: R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with f-1(x) = \( \dfrac{\sqrt{(x+6)-1}}{3}\)

Class 12 Maths Relations and Functions View Answer

If f(x) = \(\dfrac{ (4x + 3)}{(6x – 4)}\), x ≠ (\( \dfrac{2}{3}\)) show that fof(x) = x, for all x ≠ (\( \dfrac{2}{3}\)). What is the inverse of f?

Class 12 Maths Relations and Functions View Answer