Let f, g, h be real functions given by f(x) = sin x, g (x) = 2x and h (x) = cos x. Prove that fog = go (f h).

Asked by Aaryan | 1 year ago |  24

1 Answer

Solution :-

Given that f(x) = sin x, g (x) = 2x and h (x) = cos x

We know that f: R→ [−1, 1] and g: R→ R

Clearly, the range of g is a subset of the domain of f.

fog: R → R

Now, (f h) (x) = f (x) h (x) = (sin x) (cos x) = \( \dfrac{ 1}{2}\) sin (2x)

Domain of f h is R.

Since range of sin x is [-1, 1], −1 ≤ sin 2x ≤ 1

\(\dfrac{ -1}{2}\) ≤ sin \( \dfrac{ x}{2}\) ≤ \( \dfrac{ 1}{2}\)

Range of f h = [\( \dfrac{ -1}{2}\), \( \dfrac{ 1}{2}\)]

So, (f h): R → [\( \dfrac{ -1}{2}\),\( \dfrac{ 1}{2}\)]

Clearly, range of f h is a subset of g.

⇒ go (f h): R → R

⇒ Domains of fog and go (f h) are the same.

So, (fog) (x) = f (g (x))

= f (2x)

= sin (2x)

And (go (f h)) (x) = g ((f(x). h(x))

= g (sin x cos x)

= 2sin x cos x

= sin (2x)

⇒ (fog) (x) = (go (f h)) (x), ∀x ∈ R

Hence, fog = go (f h)

Answered by Aaryan | 1 year ago

Related Questions

Let A be the set of first five natural and let R be a relation on A defined as follows: (x, y) R x ≤ y

Express R and R-1 as sets of ordered pairs. Determine also

(i) the domain of R‑1

(ii) The Range of R.

Class 12 Maths Relations and Functions View Answer

A function f: R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).

Class 12 Maths Relations and Functions View Answer

If f: R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1 (24) and f−1 (5).

Class 12 Maths Relations and Functions View Answer

Consider f: R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with f-1(x) = \( \dfrac{\sqrt{(x+6)-1}}{3}\)

Class 12 Maths Relations and Functions View Answer

If f(x) = \(\dfrac{ (4x + 3)}{(6x – 4)}\), x ≠ (\( \dfrac{2}{3}\)) show that fof(x) = x, for all x ≠ (\( \dfrac{2}{3}\)). What is the inverse of f?

Class 12 Maths Relations and Functions View Answer