Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f: A → B, g: B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.

Asked by Aaryan | 1 year ago |  67

1 Answer

Solution :-

Given that f (x) = 2x + 1

⇒ f= {(1, 2(1) + 1), (2, 2(2) + 1), (3, 2(3) + 1), (4, 2(4) + 1)}

= {(1, 3), (2, 5), (3, 7), (4, 9)}

Also given that g(x) = x2−2

⇒ g = {(3, 32−2), (5, 52−2), (7, 72−2), (9, 92−2)}

= {(3, 7), (5, 23), (7, 47), (9, 79)}

Clearly f and g are bijections and, hence, f−1: B→ A and g−1: C→ B exist.

So, f−1= {(3, 1), (5, 2), (7, 3), (9, 4)}

And g−1= {(7, 3), (23, 5), (47, 7), (79, 9)}

Now, (f−1 o g−1): C→ A

f−1 o g−1 = {(7, 1), (23, 2), (47, 3), (79, 4)}……….(1)

Also, f: A→B and g: B → C,

⇒ gof: A → C, (gof) −1 : C→ A

So, f−1 o g−1and (gof)−1 have same domains.

(gof) (x) = g (f (x))

=g (2x + 1)

=(2x +1 )2− 2

⇒ (gof) (x) = 4x+ 4x + 1 − 2

⇒ (gof) (x) = 4x2+ 4x −1

Then, (gof) (1) = g (f (1))

= 4 + 4 − 1

=7,

(gof) (2) = g (f (2))

= 4(2)2 + 4(2) – 1 = 23,

(gof) (3) = g (f (3))

= 4(3)2 + 4(3) – 1 = 47 and

(gof) (4) = g (f (4))

= 4(4)2 + 4(4) − 1 = 79

So, gof = {(1, 7), (2, 23), (3, 47), (4, 79)}

⇒ (gof)– 1 = {(7, 1), (23, 2), (47, 3), (79, 4)}…… (2)

From (1) and (2), we get:

(gof)−1 = f−1o g−1

Answered by Aaryan | 1 year ago

Related Questions

Let A be the set of first five natural and let R be a relation on A defined as follows: (x, y) R x ≤ y

Express R and R-1 as sets of ordered pairs. Determine also

(i) the domain of R‑1

(ii) The Range of R.

Class 12 Maths Relations and Functions View Answer

A function f: R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).

Class 12 Maths Relations and Functions View Answer

If f: R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1 (24) and f−1 (5).

Class 12 Maths Relations and Functions View Answer

Consider f: R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with f-1(x) = \( \dfrac{\sqrt{(x+6)-1}}{3}\)

Class 12 Maths Relations and Functions View Answer

If f(x) = \(\dfrac{ (4x + 3)}{(6x – 4)}\), x ≠ (\( \dfrac{2}{3}\)) show that fof(x) = x, for all x ≠ (\( \dfrac{2}{3}\)). What is the inverse of f?

Class 12 Maths Relations and Functions View Answer