But we know that \( sin \dfrac{7\pi}{6} =-\dfrac{1}{2}\)
By substituting this in \( sin^{-1}( sin \dfrac{7\pi}{6})\) we get,
\(sin^{-1} ( \dfrac{-1}{2})\)
Now let y = \(sin^{-1} ( \dfrac{-1}{2})\)
– Sin y =\( \dfrac{1}{2}\)
\(– Sin (\dfrac{\pi}{6}) = \dfrac{1}{2}\)
\( – Sin (\dfrac{\pi}{6}) = sin (\dfrac{-\pi}{6})\)
The range of principal value of \(sin^{-1} (\dfrac{-\pi}{2},\dfrac{\pi}{2})\) and \(sin (\dfrac{-\pi}{6}) =- \dfrac{1}{2}\)
Therefore \( sin^{-1}( sin \dfrac{7\pi}{6})=\dfrac{-\pi}{6}\)
Answered by Aaryan | 1 year agoEvaluate \( Cosec (cos^{-1} \dfrac{8}{17})\)