Given \( cos^{-1}(cos \dfrac{4\pi}{3})\)
But we know that \( cos \dfrac{4\pi}{3}=\dfrac{-1}{2}\)
By substituting these values in \( cos^{-1}(cos \dfrac{4\pi}{3})\)we get,
\(cos^{-1}( \dfrac{-1}{2})\)
Now let y = \( cos^{-1}( \dfrac{-1}{2})\)
Therefore cos y = \(- \dfrac{1}{2}\)
\( – Cos (\dfrac{\pi}{3}) = \dfrac{1}{2}\)
\( Cos (\pi-\dfrac{\pi}{3}) =- \dfrac{1}{2}\)
\( Cos (\dfrac{2\pi}{3}) = -\dfrac{1}{2}\)
Hence range of principal value of cos-1 is [0, π] and \( Cos (\dfrac{2\pi}{3}) = -\dfrac{1}{2}\)
Therefore \( cos^{-1}(cos \dfrac{4\pi}{3})=\dfrac{2\pi}{3}\)
Answered by Aaryan | 1 year agoEvaluate \( Cosec (cos^{-1} \dfrac{8}{17})\)