Given \( cos^{-1}(cos \dfrac{13\pi}{6})\)
But we know that \( cos \dfrac{13\pi}{6}=\dfrac{ \sqrt{3}}{2}\)
By substituting these values in \( cos^{-1}(cos \dfrac{13\pi}{6}) \)we get,
Cos-1 \( \dfrac{ \sqrt{3}}{2}\)
Now let y = cos-1 \( \dfrac{ \sqrt{3}}{2}\)
Therefore cos y = \( \dfrac{ \sqrt{3}}{2}\)
\(Cos (\dfrac{\pi}{6}) = \dfrac{ \sqrt{3}}{2}\)
Hence range of principal value of cos-1 is [0, π] and \( Cos (\dfrac{\pi}{6}) = \dfrac{ \sqrt{3}}{2}\)
Therefore \( cos^{-1}(cos \dfrac{13\pi}{6}) = \dfrac{\pi}{6}\)
Answered by Aaryan | 1 year agoEvaluate \( Cosec (cos^{-1} \dfrac{8}{17})\)