Evaluate \( cos^{-1}(cos \dfrac{13\pi}{6})\)

Asked by Sakshi | 1 year ago |  62

1 Answer

Solution :-

Given \( cos^{-1}(cos \dfrac{13\pi}{6})\)

But we know that  \( cos \dfrac{13\pi}{6}=\dfrac{ \sqrt{3}}{2}\)

By substituting these values in \( cos^{-1}(cos \dfrac{13\pi}{6}) \)we get,

Cos-1 \( \dfrac{ \sqrt{3}}{2}\)

Now let y = cos-1 \( \dfrac{ \sqrt{3}}{2}\)

Therefore cos y = \( \dfrac{ \sqrt{3}}{2}\)

 \(Cos (\dfrac{\pi}{6}) = \dfrac{ \sqrt{3}}{2}\)

Hence range of principal value of cos-1 is [0, π] and \( Cos (\dfrac{\pi}{6}) = \dfrac{ \sqrt{3}}{2}\)

Therefore \( cos^{-1}(cos \dfrac{13\pi}{6}) = \dfrac{\pi}{6}\)

Answered by Aaryan | 1 year ago

Related Questions