Given \( tan^{-1}(tan \dfrac{7\pi}{6})\)
We know that tan \(tan \dfrac{7\pi}{6} =\dfrac{1}{\sqrt{3}}\)
By substituting this value in \( tan^{-1}(tan \dfrac{7\pi}{6})\)we get,
Tan-1 \( \dfrac{1}{\sqrt{3}}\)
Now let tan-1 \(( \dfrac{1}{\sqrt{3}})=y\)
Tan y = \( \dfrac{1}{\sqrt{3}}\)
\(tan \dfrac{7\pi}{6} =\dfrac{1}{\sqrt{3}} \)
The range of the principal value of tan-1 is \( (\dfrac{-\pi}{2},\dfrac{\pi}{2})\)
and \(tan \dfrac{7\pi}{6} =\dfrac{1}{\sqrt{3}} \)
Therefore \( tan^{-1}(tan \dfrac{7\pi}{6})= \dfrac{\pi}{6}\)
Answered by Aaryan | 1 year agoEvaluate \( Cosec (cos^{-1} \dfrac{8}{17})\)