Let \( cos^{-1}\dfrac{8}{17} = y\)
cos y = \(\dfrac{8}{17} \) where y ∈ [0, \(\dfrac{\pi}{2}\)]
Now, we have to find
\( Cosec\;( cos^{-1}\dfrac{8}{17} )= cosec\;y\)
We know that,
sin2 θ + cos2 θ = 1
sin2 θ = \( \sqrt{ (1 – cos^2 θ)}\)
So,
sin y = \( \sqrt{ (1 – cos^2 y)}\)
= \( \sqrt{ (1 –\dfrac{8}{17}^2)}\)
= \(\sqrt{ \dfrac{225}{289}}\)
= \( \dfrac{15}{17}\)
Hence,
\( Cosec\; y = \dfrac{1}{sin\;y}\)
= \( \dfrac{1}{(\dfrac{15}{17})}=\) \( \dfrac{17}{15}\)
Therefore,
\( Cosec\;( cos^{-1}\dfrac{8}{17} )= \dfrac{17}{15}\)
Answered by Aaryan | 1 year agoEvaluate \( tan^{-1}(tan \dfrac{9\pi}{4})\)