Given a_{i j} = 2i

Let A = [a_{i j}]_{2×3}

So, the elements in a 3×4 matrix are

a_{11}, a_{12}, a_{13}, a_{14,} a_{21}, a_{22}, a_{23}, a_{24}, a_{31, }a_{32, }a_{33, }a_{34}

a_{11} = 2×1 = 2

a_{12} = 2×1 = 2

a_{13} = 2×1 = 2

a_{14} = 2×1 = 2

a_{21} = 2×2 = 4

a_{22} = 2×2 = 4

a_{23} = 2×2 = 4

a_{24 =} 2×2 = 4

a_{31} = 2×3 = 6

a_{32} = 2×3 = 6

a_{33} = 2×3 = 6

a_{34} = 2×3 = 6

Substituting these values in matrix A we get,

Answered by Aaryan | 1 year ago

Construct a 4 × 3 matrix A = [a_{i j}] whose elements a_{i j} are given by a_{i j} = i

Construct a 4 × 3 matrix A = [ai j] whose elements ai j are given by \( a_{i j} = \dfrac{(i – j)}{(i + j)}\)