Construct a 3×4 matrix A = [ai j] whose elements ai j are given by \( a_{ij} = \dfrac{1}{2} |-3i + j|\)

Asked by Aaryan | 1 year ago |  58

1 Answer

Solution :-

Given ai j = \( \dfrac{1}{2}\) |-3i + j|

Let A = [ai j]2×3

So, the elements in a 3×4 matrix are

a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34

a11 = -1

a12 = \(- \dfrac{1}{2}\)

a13 = 0

a14 = \( \dfrac{1}{2}\)

a21 = \( - \dfrac{5}{2}\)

a22 = -2

a23 = \( - \dfrac{3}{2}\)

a24 = -1

a31 = -4

a32 = \( - \dfrac{7}{2}\)

a33 = -3

 a34 = \( - \dfrac{5}{2}\)

Answered by Sakshi | 1 year ago

Related Questions

Find the values of a, b, c and d from the equations:

 

Class 12 Maths Matrices View Answer

Construct a 4 × 3 matrix A = [ai j] whose elements ai j are given by ai j = i

Class 12 Maths Matrices View Answer

Construct a 4 × 3 matrix A = [ai j] whose elements ai j are given by \( a_{i j} = \dfrac{(i – j)}{(i + j)}\)

Class 12 Maths Matrices View Answer