Given ai j = \( \dfrac{1}{2}\) |-3i + j|
Let A = [ai j]2×3
So, the elements in a 3×4 matrix are
a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34
a11 = -1
a12 = \(- \dfrac{1}{2}\)
a13 = 0
a14 = \( \dfrac{1}{2}\)
a21 = \( - \dfrac{5}{2}\)
a22 = -2
a23 = \( - \dfrac{3}{2}\)
a24 = -1
a31 = -4
a32 = \( - \dfrac{7}{2}\)
a33 = -3
a34 = \( - \dfrac{5}{2}\)
Answered by Sakshi | 1 year agoConstruct a 4 × 3 matrix A = [ai j] whose elements ai j are given by ai j = i
Construct a 4 × 3 matrix A = [ai j] whose elements ai j are given by \( a_{i j} = \dfrac{(i – j)}{(i + j)}\)