Maximize Z = 3x + 4y

Subject to

2x+2y≤802x+4y≤120

Asked by Sakshi | 1 year ago |  163

##### Solution :-

We have to maximize Z = 3x + 4y
First, we will convert the given inequations into equations, we obtain the following equations:
2x + 2y = 80, 2x + 4y = 120

Region represented by 2x + 2y ≤ 80:
The line 2x + 2y = 80 meets the coordinate axes at A(40, 0)A40, 0 and B(0, 40)B0, 40 respectively. By joining these points we obtain the line 2x + 2y = 80.
Clearly (0,0) satisfies the inequation 2x + 2y ≤ 80. So,the region containing the origin represents the solution set of the inequation 2x + 2y ≤ 80.

Region represented by 2x + 4y ≤ 120:
The line 2x + 4y = 120 meets the coordinate axes at C(60, 0)C60, 0 and D(0, 30)D0, 30 respectively. By joining these points we obtain the line 2x + 4y ≤ 120.
Clearly (0,0) satisfies the inequation 2x + 4y ≤ 120. So,the region containing the origin represents the solution set of the inequation 2x + 4y ≤ 120.

The feasible region determined by the system of constraints, 2x + 2y ≤ 80, 2x + 4y ≤ 120 are as follows:

The corner points of the feasible region are O(0, 0), A(40, 0)A40, 0, E(20, 20)E20, 20 and D(0, 30)D0, 30.

The values of Z at these corner points are as follows:

 Corner point Z = 3x + 4y O(0, 0) 3 × 0 + 4 × 0 = 0 A(40, 0) 3× 40 + 4 × 0 = 120 E(20, 20) 3 × 20 + 4 × 20 = 140 D(0, 30) 10 × 0 + 4 ×30 = 120

We see that the maximum value of the objective function Z is 140 which is at E(20, 20)E20, 20 that means at x = 20 and y = 20.
Thus, the optimal value of Z is 140.

Answered by Aaryan | 1 year ago

### Related Questions

#### Minimize Z = 2x + 4y

Minimize Z = 2x + 4y

Subject to

x+y≥8

x+4y≥12

x≥3, y≥2

#### Maximize Z = 7x + 10y

Maximize Z = 7x + 10y

Subject to

x+y≤30000

y≤12000

x≥6000

x≥y

x, y≥0

#### Maximize Z = 10x + 6y

Maximize Z = 10x + 6y

Subject to

3x+y≤122x+5y≤34  x, y≥0

#### Maximize Z = 15x + 10y

Maximize Z = 15x + 10y

Subject to

3x+2y≤802x+3y≤70  x, y≥0