Write the set of all positive integers whose cube is odd.
Every odd number has an odd cube
Odd numbers can be represented as 2n+1.
{2n+1: n ∈ Z, n>0} or
{1,3,5,7,……}
If A = {x : x ϵ R, x < 5} and B = {x : x ϵ R, x > 4}, find A ∩ B.
Prove that A – B = A ∩ B.’
Find the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.
Prove that A ∩ (A ⋃ B)’ = ϕ
If A = {3, {2}}, find P(A).