For any two sets A and B, prove that A ∪ (B – A) = A ∪ B

Asked by Sakshi | 1 year ago |  54

1 Answer

Solution :-

A ∪ (B – A) = A ∪ B

Let us consider LHS A ∪ (B – A)

Let, x ∈ A ∪ (B –A) ⇒ x ∈ A or x ∈ (B – A)

⇒ x ∈ A or x ∈ B and x ∉ A

⇒ x ∈ B

⇒ x ∈ (A ∪ B) (since, B ⊂ (A ∪ B))

This is true for all x ∈ A ∪ (B–A)

∴ A ∪ (B–A) ⊂ (A ∪ B)…… (1)

Conversely,

Let x ∈ (A ∪ B) ⇒ x ∈ A or x ∈ B

⇒ x ∈ A or x ∈ (B–A) (since, B ⊂ (A ∪ B))

⇒ x ∈ A ∪ (B–A)

∴ (A ∪ B) ⊂ A ∪ (B–A)…… (2)

From 1 and 2 we get,

A ∪ (B – A) = A ∪ B

Hence proved.

Answered by Aaryan | 1 year ago

Related Questions

If A = {x : x ϵ R, x < 5} and B = {x : x ϵ R, x > 4}, find A ∩ B.

Class 11 Maths Sets View Answer

Find the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.

Class 11 Maths Sets View Answer