A ∪ (B – A) = A ∪ B
Let us consider LHS A ∪ (B – A)
Let, x ∈ A ∪ (B –A) ⇒ x ∈ A or x ∈ (B – A)
⇒ x ∈ A or x ∈ B and x ∉ A
⇒ x ∈ B
⇒ x ∈ (A ∪ B) (since, B ⊂ (A ∪ B))
This is true for all x ∈ A ∪ (B–A)
∴ A ∪ (B–A) ⊂ (A ∪ B)…… (1)
Conversely,
Let x ∈ (A ∪ B) ⇒ x ∈ A or x ∈ B
⇒ x ∈ A or x ∈ (B–A) (since, B ⊂ (A ∪ B))
⇒ x ∈ A ∪ (B–A)
∴ (A ∪ B) ⊂ A ∪ (B–A)…… (2)
From 1 and 2 we get,
A ∪ (B – A) = A ∪ B
Hence proved.
Answered by Aaryan | 1 year agoFind the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.