If A and B are two sets such that n (A ∪ B) = 50, n (A) = 28 and n (B) = 32, find n (A ∩ B).
We have,
n (A ∪ B) = 50
n (A) = 28
n (B) = 32
We know, n (A ∪ B) = n (A) + n (B) – n (A ∩ B)
Substituting the values we get
50 = 28 + 32 – n (A ∩ B)
50 = 60 – n (A ∩ B)
–10 = – n (A ∩ B)
n (A ∩ B) = 10
If A = {x : x ϵ R, x < 5} and B = {x : x ϵ R, x > 4}, find A ∩ B.
Prove that A – B = A ∩ B.’
Find the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.
Prove that A ∩ (A ⋃ B)’ = ϕ
If A = {3, {2}}, find P(A).