A ∪ B) x C = (A x C) = (A x C) ∪ (B x C)
Let (x, y) be an arbitrary element of (A ∪ B) × C
(x, y) ∈ (A ∪ B) C
Since, (x, y) are elements of Cartesian product of (A ∪ B) × C
x ∈ (A ∪ B) and y ∈ C
(x ∈ A or x ∈ B) and y ∈ C
(x ∈ A and y ∈ C) or (x ∈ Band y ∈ C)
(x, y) ∈ A × C or (x, y) ∈ B × C
(x, y) ∈ (A × C) ∪ (B × C) … (1)
Let (x, y) be an arbitrary element of (A × C) ∪ (B × C).
(x, y) ∈ (A × C) ∪ (B × C)
(x, y) ∈ (A × C) or (x, y) ∈ (B × C)
(x ∈ A and y ∈ C) or (x ∈ B and y ∈ C)
(x ∈ A or x ∈ B) and y ∈ C
x ∈ (A ∪ B) and y ∈ C
(x, y) ∈ (A ∪ B) × C … (2)
From 1 and 2, we get: (A ∪ B) × C = (A × C) ∪ (B × C)
Answered by Sakshi | 1 year agoLet R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.
Let A = {3, 4, 5, 6} and R = {(a, b) : a, b ϵ A and a
(i) Write R in roster form.
(ii) Find: dom (R) and range (R)
(iii) Write R–1 in roster form
Let A = (1, 2, 3} and B = {4} How many relations can be defined from A to B.
Let R = {(x, x2) : x is a prime number less than 10}.
(i) Write R in roster form.
(ii) Find dom (R) and range (R).
If A = {5} and B = {5, 6}, write down all possible subsets of A × B.