Prove that (A ∩ B) x C = (A x C) ∩ (B x C)

Asked by Aaryan | 1 year ago |  84

1 Answer

Solution :-

(A ∩ B) x C = (A x C) ∩ (B x C)

Let (x, y) be an arbitrary element of (A ∩ B) × C.

(x, y) ∈ (A ∩ B) × C

Since, (x, y) are elements of Cartesian product of (A ∩ B) × C

x ∈ (A ∩ B) and y ∈ C

(x ∈ A and x ∈ B) and y ∈ C

(x ∈ A and y ∈ C) and (x ∈ Band y ∈ C)

(x, y) ∈ A × C and (x, y) ∈ B × C

(x, y) ∈ (A × C) ∩ (B × C) … (1)

Let (x, y) be an arbitrary element of (A × C) ∩ (B × C).

(x, y) ∈ (A × C) ∩ (B × C)

(x, y) ∈ (A × C) and (x, y) ∈ (B × C)

(x ∈A and y ∈ C) and (x ∈ Band y ∈ C)

(x ∈A and x ∈ B) and y ∈ C

x ∈ (A ∩ B) and y ∈ C

(x, y) ∈ (A ∩ B) × C … (2)

From 1 and 2, we get: (A ∩ B) × C = (A × C) ∩ (B × C)

Answered by Sakshi | 1 year ago

Related Questions

Let R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.

Class 11 Maths Relations and Functions View Answer

Let R = {(x, x2) : x is a prime number less than 10}.

(i) Write R in roster form.

(ii) Find dom (R) and range (R).

Class 11 Maths Relations and Functions View Answer