Given:
A × B ⊆ C x D and A ∩ B ∈ ∅
A × B ⊆ C x D denotes A × B is subset of C × D that is every element A × B is in C × D.
And A ∩ B ∈ ∅ denotes A and B does not have any common element between them.
A × B = {(a, b): a ∈ A and b ∈ B}
We can say (a, b) ⊆ C × D [Since, A × B ⊆ C x D is given]
a ∈ C and b ∈ D
a ∈ A = a ∈ C
A ⊆ C
And
b ∈ B = b ∈ D
B ⊆ D
Hence proved.
Answered by Sakshi | 1 year agoLet R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.
Let A = {3, 4, 5, 6} and R = {(a, b) : a, b ϵ A and a
(i) Write R in roster form.
(ii) Find: dom (R) and range (R)
(iii) Write R–1 in roster form
Let A = (1, 2, 3} and B = {4} How many relations can be defined from A to B.
Let R = {(x, x2) : x is a prime number less than 10}.
(i) Write R in roster form.
(ii) Find dom (R) and range (R).
If A = {5} and B = {5, 6}, write down all possible subsets of A × B.