If A = {1, 2, 3}, B = {4, 5, 6}, which of the following are relations from A to B?

Give reasons in support of your answer.

(i) {(1, 6), (3, 4), (5, 2)}

(ii) {(1, 5), (2, 6), (3, 4), (3, 6)}

(iii) {(4, 2), (4, 3), (5, 1)}

(iv) A × B

Asked by Aaryan | 1 year ago |  32

##### Solution :-

Given,

A = {1, 2, 3}, B = {4, 5, 6}

A relation from A to B can be defined as:

A × B = {1, 2, 3} × {4, 5, 6}

= {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}

(i) {(1, 6), (3, 4), (5, 2)}

No, it is not a relation from A to B. The given set is not a subset of A × B as (5, 2) is not a part of the relation from A to B.

(ii) {(1, 5), (2, 6), (3, 4), (3, 6)}

Yes, it is a relation from A to B. The given set is a subset of A × B.

(iii) {(4, 2), (4, 3), (5, 1)}

No, it is not a relation from A to B. The given set is not a subset of A × B.

(iv) A × B

A × B is a relation from A to B and can be defined as:

{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6),(3, 4),(3, 5),(3, 6)}

Answered by Sakshi | 1 year ago

### Related Questions

#### Let R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N

Let R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.

#### Let A = (1, 2, 3} and B = {4} How many relations can be defined from A to B.

Let A = (1, 2, 3} and B = {4} How many relations can be defined from A to B.

#### Let R = {(x, x2) : x is a prime number less than 10}.

Let R = {(x, x2) : x is a prime number less than 10}.

(i) Write R in roster form.

(ii) Find dom (R) and range (R).