Find the inverse relation R-1 in R= {(x, y) : x, y ∈ N; x + 2y = 8}

Asked by Aaryan | 1 year ago |  98

1 Answer

Solution :-

Given,

R= {(x, y): x, y ∈ N; x + 2y = 8}

Here, x + 2y = 8

x = 8 – 2y

As y ∈ N, Put the values of y = 1, 2, 3,…… till x ∈ N

When, y = 1, x = 8 – 2(1) = 8 – 2 = 6

When, y = 2, x = 8 – 2(2) = 8 – 4 = 4

When, y = 3, x = 8 – 2(3) = 8 – 6 = 2

When, y = 4, x = 8 – 2(4) = 8 – 8 = 0

Now, y cannot hold value 4 because x = 0 for y = 4 which is not a natural number.

R = {(2, 3), (4, 2), (6, 1)}

R‑1 = {(3, 2), (2, 4), (1, 6)}

Answered by Sakshi | 1 year ago

Related Questions

Let R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.

Class 11 Maths Relations and Functions View Answer

Let R = {(x, x2) : x is a prime number less than 10}.

(i) Write R in roster form.

(ii) Find dom (R) and range (R).

Class 11 Maths Relations and Functions View Answer