If f (x) = x2 – 3x + 4, then find the values of x satisfying the equation f (x) = f (2x + 1).

Asked by Sakshi | 1 year ago |  59

1 Answer

Solution :-

Given:

f(x) = x2 – 3x + 4.

Let us find x satisfying f (x) = f (2x + 1).

We have,

f (2x + 1) = (2x + 1)2 – 3(2x + 1) + 4

= (2x) 2 + 2(2x) (1) + 12 – 6x – 3 + 4

= 4x2 + 4x + 1 – 6x + 1

= 4x2 – 2x + 2

Now, f (x) = f (2x + 1)

x2 – 3x + 4 = 4x2 – 2x + 2

4x2 – 2x + 2 – x2 + 3x – 4 = 0

3x2 + x – 2 = 0

3x2 + 3x – 2x – 2 = 0

3x(x + 1) – 2(x + 1) = 0

(x + 1)(3x – 2) = 0

x + 1 = 0 or 3x – 2 = 0

x = –1 or 3x = 2

x = –1 or \(\dfrac{2}{3}\)

The values of x are –1 and \( \dfrac{2}{3}\)

Answered by Sakshi | 1 year ago

Related Questions

Let R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.

Class 11 Maths Relations and Functions View Answer

Let R = {(x, x2) : x is a prime number less than 10}.

(i) Write R in roster form.

(ii) Find dom (R) and range (R).

Class 11 Maths Relations and Functions View Answer