Find the domain of real valued functions of real variable f (x) =\(\sqrt{ (9-x^2)}\)

Asked by Sakshi | 1 year ago |  97

1 Answer

Solution :-

f (x) = \( \sqrt{(9-x^2)}\)

We know the square of a real number is never negative.

f (x) takes real values only when 9 – x2 ≥ 0

9 ≥ x2

x2 ≤ 9

x2 – 9 ≤ 0

x2 – 32 ≤ 0

(x + 3)(x – 3) ≤ 0

x ≥ –3 and x ≤ 3

x ∈ [–3, 3]

Domain (f) = [–3, 3]

Answered by Aaryan | 1 year ago

Related Questions

Let R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.

Class 11 Maths Relations and Functions View Answer

Let R = {(x, x2) : x is a prime number less than 10}.

(i) Write R in roster form.

(ii) Find dom (R) and range (R).

Class 11 Maths Relations and Functions View Answer