Number of arrangements of ‘n’ things taken all at a time = P (n, n)

The total number of ways in which five children can stand in a queue = the number of arrangements of 5 things taken all at a time = P (5, 5)

So,

P (5, 5) = \( \dfrac{5!}{(5 – 5)!}\)

= 5! [Since, 0! = 1]

= 5 × 4 × 3 × 2 × 1

= 120

Hence, Number of ways in which five children can stand in a queue are 120.

Answered by Sakshi | 1 year agoHow many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.

How many words, with or without meaning can be formed from the letters of the word ‘MONDAY’, assuming that no letter is repeated, if

**(i)** 4 letters are used at a time

**(ii)** all letters are used at a time

**(iii)** all letters are used but first letter is a vowel ?

There are 10 persons named P_{1}, P_{2}, P_{3} …, P_{10}. Out of 10 persons, 5 persons are to be arranged in a line such that is each arrangement P_{1} must occur whereas P_{4} and P_{5} do not occur. Find the number of such possible arrangements.

How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?