How many words can be formed out of the letters of the word, ‘ORIENTAL,’ so that the vowels always occupy the odd places?

Asked by Aaryan | 1 year ago |  72

##### Solution :-

Given:

The word ‘ORIENTAL’

Number of vowels in the word ‘ORIENTAL’ = 4(O, I, E, A)

Number of consonants in given word = 4(R, N, T, L)

Odd positions are (1, 3, 5 or 7)

Four vowels can be arranged in these 4 odd places in 4P4 ways.

Remaining 4 even places (2,4,6,8) are to be occupied by the 4 consonants in 4P4 ways.

P (4, 4) × P (4, 4) = $$\dfrac{ 4!}{(4 – 4)!} × \dfrac{4!}{(4 – 4)!}$$

= 4! × 4!

= 4 × 3 × 2 × 1 × 4 × 3 × 2 × 1

= 24 × 24

= 576

Hence, the number of arrangements so that the vowels occupy only odd positions is 576.

Answered by Sakshi | 1 year ago

### Related Questions

#### How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

#### Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.

Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.

#### How many words, with or without meaning can be formed from the letters of the word ‘MONDAY’,

How many words, with or without meaning can be formed from the letters of the word ‘MONDAY’, assuming that no letter is repeated, if

(i) 4 letters are used at a time

(ii) all letters are used at a time

(iii) all letters are used but first letter is a vowel ?