Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.

Asked by Aaryan | 1 year ago |  44

##### Solution :-

There are 9 (i.e powers 3 + 2 + 4 = 9) objects in the expression a3 b2 c4 and there are 3 a’s, 2 b’s, 4 c’s

total number of arrangements = $$\dfrac{ 9! }{(3! 2! 4!)}$$

= 7×6×5×3×2×1

= 1260

Answered by Sakshi | 1 year ago

### Related Questions

#### How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

#### Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.

Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.

#### How many words, with or without meaning can be formed from the letters of the word ‘MONDAY’,

How many words, with or without meaning can be formed from the letters of the word ‘MONDAY’, assuming that no letter is repeated, if

(i) 4 letters are used at a time

(ii) all letters are used at a time

(iii) all letters are used but first letter is a vowel ?