Name the octants in which the following points lie:

(i) (5, 2, 3)

(ii) (-5, 4, 3)

(iii) (4, -3, 5)

(iv) (7, 4, -3)

(v) (-5, -4, 7)

(vi) (-5, -3, -2)

(vii) (2, -5, -7)

(viii) (-7, 2, -5)

Asked by Sakshi | 1 year ago |  34

Solution :-

(i) (5, 2, 3)

In this case, since x, y and z all three are positive then octant will be XOYZ

(ii) (-5, 4, 3)

In this case, since x is negative and y and z are positive then the octant will be X′OYZ

(iii) (4, -3, 5)

In this case, since y is negative and x and z are positive then the octant will be XOY′Z

(iv) (7, 4, -3)

In this case, since z is negative and x and y are positive then the octant will be XOYZ′

(v) (-5, -4, 7)

In this case, since x and y are negative and z is positive then the octant will be X′OY′Z

(vi) (-5, -3, -2)

In this case, since x, y and z all three are negative then octant will be X′OY′Z′

(vii) (2, -5, -7)

In this case, since z and y are negative and x is positive then the octant will be XOY′Z′

(viii) (-7, 2, -5)

In this case, since x and z are negative and x is positive then the octant will be X′OYZ′

Answered by Aaryan | 1 year ago

Related Questions

A(1, 2, 3), B(0, 4, 1), C(-1, -1, -3) are the vertices of a triangle ABC. Find the point in which the bisector of the

A(1, 2, 3), B(0, 4, 1), C(-1, -1, -3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.

Class 11 Maths Introduction to Three Dimensional Geometry View Answer

The mid-points of the sides of a triangle ABC are given by (-2, 3, 5), (4, -1, 7) and (6, 5, 3). Find the coordinates

The mid-points of the sides of a triangle ABC are given by (-2, 3, 5), (4, -1, 7) and (6, 5, 3). Find the coordinates of A, B and C.

Class 11 Maths Introduction to Three Dimensional Geometry View Answer

If the points A(3, 2, -4), B(9, 8, -10) and C(5, 4, -6) are collinear, find the ratio in which C divided AB.

If the points A(3, 2, -4), B(9, 8, -10) and C(5, 4, -6) are collinear, find the ratio in which C divided AB.

Class 11 Maths Introduction to Three Dimensional Geometry View Answer

Find the ratio in which the line segment joining the points (2, -1, 3) and (-1, 2, 1) is divided by the plane

Find the ratio in which the line segment joining the points (2, -1, 3) and (-1, 2, 1) is divided by the plane x + y + z = 5.

Class 11 Maths Introduction to Three Dimensional Geometry View Answer

Find the ratio in which the line joining (2, 4, 5) and (3, 5, 4) is divided by the yz-plane.

Find the ratio in which the line joining (2, 4, 5) and (3, 5, 4) is divided by the yz-plane.

Class 11 Maths Introduction to Three Dimensional Geometry View Answer