How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?

Asked by Aaryan | 1 year ago |  38

##### Solution :-

Given that we need to find the no. of ways of obtaining a product by multiplying two or more from the numbers 3, 5, 7, 11.

Number of ways = (no. of ways of multiplying two numbers) + (no. of ways of multiplying three numbers) + (no. of multiplying four numbers)

4C2 + 4C3 + 4C4

By using the formula,

nCr =$$\dfrac{ n!}{r!(n – r)!}$$

= $$\dfrac{12}{2}$$ + 4 + 1

= 6 + 4 + 1

= 11

The total number of ways of product is 11 ways.

Answered by Sakshi | 1 year ago

### Related Questions

#### How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

#### Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.

Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.

#### How many words, with or without meaning can be formed from the letters of the word ‘MONDAY’,

How many words, with or without meaning can be formed from the letters of the word ‘MONDAY’, assuming that no letter is repeated, if

(i) 4 letters are used at a time

(ii) all letters are used at a time

(iii) all letters are used but first letter is a vowel ?