A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?

Asked by Aaryan | 1 year ago |  24

Solution :-

Given:

Total number of questions = 10

Questions in part A = 6

Questions in part B = 7

Number of ways = (No. of ways of answering 4 questions from part A and 6 from part B) + (No. of ways of answering 5 questions from part A and 5 questions from part B) + (No. of ways of answering 6 questions from part A and 4 from part B)

= (6C4 × 7C6) + (6C5 × 7C5) + (6C6 × 7C4)

By using the formula,

nCr = $$\dfrac{ n!}{r!(n – r)!}$$

= (15×7) + (6×21) + (1×35)

= 105 + 126 + 35

= 266

The total no. of ways of answering 10 questions is 266 ways.

Answered by Sakshi | 1 year ago

Related Questions

How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.

Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.

How many words, with or without meaning can be formed from the letters of the word ‘MONDAY’,

How many words, with or without meaning can be formed from the letters of the word ‘MONDAY’, assuming that no letter is repeated, if

(i) 4 letters are used at a time

(ii) all letters are used at a time

(iii) all letters are used but first letter is a vowel ?