Given:

Total number of vowels = 5

Total number of consonants = 17

Number of ways = (No. of ways of choosing 2 vowels from 5 vowels) × (No. of ways of choosing 3 consonants from 17 consonants)

= (^{5}C_{2}) × (^{17}C_{3})

By using the formula,

^{n}C_{r} = \( \dfrac{ n!}{r!(n – r)!}\)

= 10 × (17×8×5)

= 10 × 680

= 6800

Now we need to find the no. of words that can be formed by 2 vowels and 3 consonants.

The arrangement is similar to that of arranging n people in n places which are n! Ways to arrange. So, the total no. of words that can be formed is 5!

So, 6800 × 5! = 6800 × (5×4×3×2×1)

= 6800 × 120

= 816000

The no. of words that can be formed containing 2 vowels and 3 consonants are 816000.

Answered by Sakshi | 1 year agoHow many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.

How many words, with or without meaning can be formed from the letters of the word ‘MONDAY’, assuming that no letter is repeated, if

**(i)** 4 letters are used at a time

**(ii)** all letters are used at a time

**(iii)** all letters are used but first letter is a vowel ?

There are 10 persons named P_{1}, P_{2}, P_{3} …, P_{10}. Out of 10 persons, 5 persons are to be arranged in a line such that is each arrangement P_{1} must occur whereas P_{4} and P_{5} do not occur. Find the number of such possible arrangements.

How many triangles can be obtained by joining 12 points, five of which are collinear?