There are 10 persons named P1, P2, P3 …, P10. Out of 10 persons, 5 persons are to be arranged in a line such that is each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.

Asked by Aaryan | 1 year ago |  226

1 Answer

Solution :-

Given:

Total persons = 10

Number of persons to be selected = 5 from 10 persons (P1, P2, P3 … P10)

It is also told that P1 should be present and P4 and P5 should not be present.

We have to choose 4 persons from remaining 7 persons as P1 is selected and P4 and P5 are already removed.

Number of ways = Selecting 4 persons from remaining 7 persons

7C4

By using the formula,

nCr =\( \dfrac{ n!}{r!(n – r)!}\)

7C4 =\(\dfrac{ 7! }{ 4!(7 – 4)!}\)

= \(\dfrac{ 7! }{ (4! 3!)}\)

= 7×5

= 35

Now we need to arrange the chosen 5 people. Since 1 person differs from other.

35 × 5! = 35 × (5×4×3×2×1)

= 4200

The total no. of possible arrangement can be done is 4200.

Answered by Sakshi | 1 year ago

Related Questions

How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

Class 11 Maths Permutations and Combinations View Answer

Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.

Class 11 Maths Permutations and Combinations View Answer

How many words, with or without meaning can be formed from the letters of the word ‘MONDAY’, assuming that no letter is repeated, if

(i) 4 letters are used at a time

(ii) all letters are used at a time

(iii) all letters are used but first letter is a vowel ?

Class 11 Maths Permutations and Combinations View Answer

How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?

Class 11 Maths Permutations and Combinations View Answer