Find the image of:

(i) (-2, 3, 4) in the yz-plane

(ii) (-5, 4, -3) in the xz-plane

(iii) (5, 2, -7) in the xy-plane

(iv) (-5, 0, 3) in the xz-plane

(v) (-4, 0, 0) in the xy-plane

Asked by Sakshi | 1 year ago |  63

##### Solution :-

(i) (-2, 3, 4)

Since we need to find its image in yz-plane, a sign of its x-coordinate will change

So, Image of point (-2, 3, 4) is (2, 3, 4)

(ii)(-5, 4, -3)

Since we need to find its image in xz-plane, sign of its y-coordinate will change

So, Image of point (-5, 4, -3) is (-5, -4, -3)

(iii) (5, 2, -7)

Since we need to find its image in xy-plane, a sign of its z-coordinate will change

So, Image of point (5, 2, -7) is (5, 2, 7)

(iv) (-5, 0, 3)

Since we need to find its image in xz-plane, sign of its y-coordinate will change

So, Image of point (-5, 0, 3) is (-5, 0, 3)

(v) (-4, 0, 0)

Since we need to find its image in xy-plane, sign of its z-coordinate will change

So, Image of point (-4, 0, 0) is (-4, 0, 0)

Answered by Aaryan | 1 year ago

### Related Questions

#### A(1, 2, 3), B(0, 4, 1), C(-1, -1, -3) are the vertices of a triangle ABC. Find the point in which the bisector of the

A(1, 2, 3), B(0, 4, 1), C(-1, -1, -3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.

#### The mid-points of the sides of a triangle ABC are given by (-2, 3, 5), (4, -1, 7) and (6, 5, 3). Find the coordinates

The mid-points of the sides of a triangle ABC are given by (-2, 3, 5), (4, -1, 7) and (6, 5, 3). Find the coordinates of A, B and C.

#### If the points A(3, 2, -4), B(9, 8, -10) and C(5, 4, -6) are collinear, find the ratio in which C divided AB.

If the points A(3, 2, -4), B(9, 8, -10) and C(5, 4, -6) are collinear, find the ratio in which C divided AB.