Given:
Points are (3, 0, -1) and (-2, 5, 4)
We need to find the lengths of the edges of the parallelepiped formed.
For point (3, 0, -1)
x1 = 3, y1 = 0 and z1 = -1
For point (-2, 5, 4)
x2 = -2, y2 = 5 and z2 = 4
Plane parallel to coordinate planes of x1 and x2 is yz-plane
Plane parallel to coordinate planes of y1 and y2 is xz-plane
Plane parallel to coordinate planes of z1 and z2 is xy-plane
Distance between planes x1 = 3 and x2 = -2 is 3 – (-2) = 3 + 2 = 5
Distance between planes x1 = 0 and y2 = 5 is 5 – 0 = 5
Distance between planes z1 = -1 and z2 = 4 is 4 – (-1) = 4 + 1 = 5
The edges of parallelepiped is 5, 5, 5
Answered by Aaryan | 1 year agoA(1, 2, 3), B(0, 4, 1), C(-1, -1, -3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.
The mid-points of the sides of a triangle ABC are given by (-2, 3, 5), (4, -1, 7) and (6, 5, 3). Find the coordinates of A, B and C.
If the points A(3, 2, -4), B(9, 8, -10) and C(5, 4, -6) are collinear, find the ratio in which C divided AB.
Find the ratio in which the line segment joining the points (2, -1, 3) and (-1, 2, 1) is divided by the plane x + y + z = 5.
Find the ratio in which the line joining (2, 4, 5) and (3, 5, 4) is divided by the yz-plane.