Given:

Point (3, -2, 5)

The Absolute value of any point(x, y, z) is given by,

\( \sqrt{(x^2 + y^2 + z^2)}\)

We need to make sure that absolute value to be the same for all points.

So let the point A(3, -2, 5)

Remaining 7 points are:

Point B(3, 2, 5) (By changing the sign of y coordinate)

Point C(-3, -2, 5) (By changing the sign of x coordinate)

Point D(3, -2, -5) (By changing the sign of z coordinate)

Point E(-3, 2, 5) (By changing the sign of x and y coordinate)

Point F(3, 2, -5) (By changing the sign of y and z coordinate)

Point G(-3, -2, -5) (By changing the sign of x and z coordinate)

Point H(-3, 2, -5) (By changing the sign of x, y and z coordinate)

Answered by Aaryan | 1 year agoA(1, 2, 3), B(0, 4, 1), C(-1, -1, -3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.

The mid-points of the sides of a triangle ABC are given by (-2, 3, 5), (4, -1, 7) and (6, 5, 3). Find the coordinates of A, B and C.

If the points A(3, 2, -4), B(9, 8, -10) and C(5, 4, -6) are collinear, find the ratio in which C divided AB.

Find the ratio in which the line segment joining the points (2, -1, 3) and (-1, 2, 1) is divided by the plane x + y + z = 5.

Find the ratio in which the line joining (2, 4, 5) and (3, 5, 4) is divided by the yz-plane.