Given:
The points (3, 1, 2) and (5, 5, 2)
We know x = 0 and z = 0 on y-axis
Let R(0, y, 0) any point on the y-axis
According to the question:
RA = RB
RA2 = RB2
By using the formula,
The distance between any two points (a, b, c) and (m, n, o) is given by,
So,
We know, RA2 = RB2
13+ (y – 1)2 = (y – 5)2 + 29
y2+ 1 – 2y + 13
= y2+ 25 – 10y + 29
10y – 2y = 54 – 14
8y = 40
y = \( \dfrac{40}{8}\)
= 5
The point R (0, 5, 0) on y-axis is equidistant from (3, 1, 2) and (5, 5, 2).
Answered by Aaryan | 1 year agoA(1, 2, 3), B(0, 4, 1), C(-1, -1, -3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.
The mid-points of the sides of a triangle ABC are given by (-2, 3, 5), (4, -1, 7) and (6, 5, 3). Find the coordinates of A, B and C.
If the points A(3, 2, -4), B(9, 8, -10) and C(5, 4, -6) are collinear, find the ratio in which C divided AB.
Find the ratio in which the line segment joining the points (2, -1, 3) and (-1, 2, 1) is divided by the plane x + y + z = 5.
Find the ratio in which the line joining (2, 4, 5) and (3, 5, 4) is divided by the yz-plane.