Given:
The point (1, 2, 3)
Distance = \( \sqrt{21}\)
We know x = 0 and y = 0 on z-axis
Let R(0, 0, z) any point on z-axis
According to question:
RA = \( \sqrt{21}\)
RA2 = 21
By using the formula,
The distance between any two points (a, b, c) and (m, n, o) is given by,
We know, RA2 = 21
5 + (z – 3)2 = 21
z2+ 9 – 6z + 5 = 21
z2 – 6z = 21 – 14
z2– 6z – 7 = 0
z2– 7z + z – 7 = 0
z(z– 7) + 1(z – 7) = 0
(z– 7) (z + 1) = 0
(z– 7) = 0 or (z + 1) = 0
z= 7 or z = -1
The points (0, 0, 7) and (0, 0, -1) on z-axis is equidistant from (1, 2, 3).
Answered by Aaryan | 1 year agoA(1, 2, 3), B(0, 4, 1), C(-1, -1, -3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.
The mid-points of the sides of a triangle ABC are given by (-2, 3, 5), (4, -1, 7) and (6, 5, 3). Find the coordinates of A, B and C.
If the points A(3, 2, -4), B(9, 8, -10) and C(5, 4, -6) are collinear, find the ratio in which C divided AB.
Find the ratio in which the line segment joining the points (2, -1, 3) and (-1, 2, 1) is divided by the plane x + y + z = 5.
Find the ratio in which the line joining (2, 4, 5) and (3, 5, 4) is divided by the yz-plane.