(i) All birds sing.

(ii) Some even integers are prime.

(iii) There is a complex number which is not a real number.

(iv) I will not go to school.

(v) Both the diagonals of a rectangle have the same length.

(vi) All policemen are thieves.

Asked by Aaryan | 1 year ago |  48

##### Solution :-

(i) All birds sing.

The negation of the statement is:

It is false that “All birds sing.”

Or

“All birds do not sing.”

(ii) Some even integers are prime.

The negation of the statement is:

It is false that “even integers are prime.”

Or

“Not every even integers is prime.”

(iii) There is a complex number which is not a real number.

The negation of the statement is:

It is false that “complex numbers are not a real number.”

Or

“All complex number are real numbers.”

(iv) I will not go to school.

The negation of the statement is:

“I will go to school.”

(v) Both the diagonals of a rectangle have the same length.

The negation of the statement is:

“There is at least one rectangle whose both diagonals do not have the same length.”

(vi) All policemen are thieves.

The negation of the statement is:

“No policemen are thief”.

Answered by Sakshi | 1 year ago

### Related Questions

#### Determine whether the argument used to check the validity of the following statement is correct:

Determine whether the argument used to check the validity of the following statement is correct: p: “If x2 is irrational, then x is rational.” The statement is true because the number x2 = π2 is irrational, therefore x = π is irrational.

#### Which of the following statements are true and which are false? In each case give a valid reason for saying so

Which of the following statements are true and which are false? In each case give a valid reason for saying so

(i) p: Each radius of a circle is a chord of the circle.

(ii) q: The centre of a circle bisect each chord of the circle.

(iii) r: Circle is a particular case of an ellipse.

(iv) s: If x and y are integers such that x > y, then – x < – y.

(v) t: $$\sqrt{11}$$ is a rational number.

#### By giving a counter example, show that the following statement is not true.

By giving a counter example, show that the following statement is not true. p: “If all the angles of a triangle are equal, then the triangle is an obtuse angled triangle.”