Rewrite each of the following statements in the form “p if and only is q.”
(i) p: If you watch television, then your mind is free, and if your mind is free, then you watch television.
(ii) q: If a quadrilateral is equiangular, then it is a rectangle, and if a quadrilateral is a rectangle, then it is equiangular.
(iii) r: For you to get an A grade, it is necessary and sufficient that you do all the homework you regularly.
(iv) s: If a tumbler is half empty, then it is half full, and if a tumbler is half full, then it is half empty.
Determine whether the argument used to check the validity of the following statement is correct: p: “If x2 is irrational, then x is rational.” The statement is true because the number x2 = π2 is irrational, therefore x = π is irrational.
Which of the following statements are true and which are false? In each case give a valid reason for saying so
(i) p: Each radius of a circle is a chord of the circle.
(ii) q: The centre of a circle bisect each chord of the circle.
(iii) r: Circle is a particular case of an ellipse.
(iv) s: If x and y are integers such that x > y, then – x < – y.
(v) t: \( \sqrt{11}\) is a rational number.
By giving a counter example, show that the following statement is not true. p: “If all the angles of a triangle are equal, then the triangle is an obtuse angled triangle.”
Show that the following statement is true “The integer n is even if and only if n2 is even”
Show that the following statement is true by the method of the contrapositive p: “If x is an integer and x2 is odd, then x is also odd.”